Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[(Triglycol ditolylene)imidazolium]-2,6dimethylpyridine bis(hexafluorophosphate)

Da-Bin Qin, ${ }^{\text {a,b }}$ Hai-Bin Song, ${ }^{\text {a }}$ Feng-Bo $\mathrm{Xu},{ }^{\text {a }}$ Qing-Shang Li ${ }^{\text {a }}$ and Zheng-Zhi Zhang ${ }^{\text {a }}$

${ }^{\text {a }}$ State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin 300071, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Chemical Industry, Chinaeast
Normal University, Nanchong 637000, Sichuan
Province, People's Republic of China, and

Correspondence e-mail: qindabin@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.056$
$w R$ factor $=0.188$
Data-to-parameter ratio $=11.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, 6,16,38-triaza-3,13-diazonia-22,25,28,-31-tetraoxaoctacyclo[30.2.2.2 $2^{18,21} \cdot 1^{3,6} \cdot 1^{8,12} \cdot 1^{13,16}$]hentetracon-ta-1(34), $3,8,10,12(38), 13,18,20,32,35,40$-undecaene bis(hexafluorophosphate), $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{2+} \cdot 2 \mathrm{PF}_{6}{ }^{-}$, the two imidazolium rings adopt a cis configuration with respect to the $2,6-$ dimethylpyridine group. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds.

Comment

In recent years, numerous cyclic N-heterocyclic carbene (NHC) precursors have been synthesized and structurally investigated. They have attracted considerable attention owing to their ability to coordinate very strongly to transition metals and main-group elements and an increasing use in organometallic chemistry, homogeneous catalysis and anion recognition (Herrmann \& Kocher, 1997; Bourissou et al., 2000; Barnard et al., 2004; Lee et al., 2004; Yoon et al., 2004; Baker et al., 2004). We report here the synthesis and crystal structure of a new macrocyclic NHC precursor, the title compound, (I).

(I)

The asymmetric unit of (I) is shown in Fig. 1. It consists of one $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{2+}$ cation and two $\mathrm{PF}_{6}{ }^{-}$anions. The heterocyclic cation contains a pyridine ring [$A(\mathrm{~N} 1, \mathrm{C} 1-\mathrm{C} 5)]$, two imidazolium rings $[B$ (N2,N3,C7-C9) and C (N4,N5,C30$\mathrm{C} 32)$] and two benzene rings [$D(\mathrm{C} 11-\mathrm{C} 16)$ and $E(\mathrm{C} 23-\mathrm{C} 28)]$. The two imidazolium rings adopt a cis configuration with respect to the 2,6-dimethylpyridine group. The dihedral angles $A / B, A / C, B / C, B / D, C / E, D / E$ are 52.8 (1), 82.3 (1), 32.2 (2), 85.4 (1), 70.6 (1) and 19.1 (2) ${ }^{\circ}$, respectively. The $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angles in the triglycol linkage are given in Table 1.

In the crystal structure, the $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{2+}$ cations and $\mathrm{PF}_{6}{ }^{-}$ anions are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds; the $\mathrm{C} \cdots \mathrm{F}$ distances range from 2.949 (7) to 3.399 (5) \AA (Table 2).

Received 24 March 2005 Accepted 5 April 2005 Online 27 April 2005

Experimental

Compound (I) was prepared according to the reported precedure of Garrison et al. (2001). Colourless single crystals of (I) were obtained by recrystallization from diethyl ether and acetonitrile (1:1, v / v).

Crystal data

$\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{2+} \cdot 2 \mathrm{PF}_{6}{ }^{-}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.518 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

$M_{r}=857.62$
Triclinic, $P \overline{1}$
$a=9.8299$ (11) \AA 。
$b=10.1415$ (11) \AA
$c=19.486$ (2) A
$\alpha=83.183(2)^{\circ}$
$\beta=89.886(2)^{\circ}$
$\gamma=76.646(2)^{\circ}$
$V=1876.0(4) \AA^{3}$
Cell parameters from 3160 reflections
$\theta=2.2-21.9^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.32 \times 0.24 \times 0.22 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.922, T_{\text {max }}=0.953$
10269 measured reflections

> 6554 independent reflections
> 4429 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.017$
> $\theta_{\max }=25.0^{\circ}$
> $h=-11 \rightarrow 9$
> $k=-12 \rightarrow 12$
> $l=-23 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.188$
$S=1.08$
6554 reflections
560 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1116 P)^{2}\right. \\
& \quad+0.2928 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 17-\mathrm{C} 18$	$-113.1(4)$	$\mathrm{O} 2-\mathrm{C} 19-\mathrm{C} 20-\mathrm{O} 3$	$-66.8(4)$
$\mathrm{C} 19-\mathrm{O} 2-\mathrm{C} 18-\mathrm{C} 17$	$-161.6(4)$	$\mathrm{C} 20-\mathrm{O} 3-\mathrm{C} 21-\mathrm{C} 22$	$-165.7(3)$
$\mathrm{O} 1-\mathrm{C} 17-\mathrm{C} 18-\mathrm{O} 2$	$73.2(4)$	$\mathrm{C} 23-\mathrm{O} 4-\mathrm{C} 22-\mathrm{C} 21$	$-180.0(3)$
$\mathrm{C} 18-\mathrm{O} 2-\mathrm{C} 19-\mathrm{C} 20$	$-179.6(3)$	$\mathrm{O} 3-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 4$	$-171.8(3)$
$\mathrm{C} 21-\mathrm{O} 3-\mathrm{C} 20-\mathrm{C} 19$	$108.8(4)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6B $\cdots \mathrm{F}^{\mathrm{i}}$	0.97	2.51	$3.399(5)$	153
C7-H7 $\cdots \mathrm{F}^{\mathrm{i}}$	0.93	2.19	$2.949(7)$	138
C9-H9 $\cdots \mathrm{F}^{\mathrm{i}}$	0.93	2.51	$3.299(9)$	142
C25-H25 FF10	0.93	2.51	$3.347(9)$	150
C29-H29B $\cdots \mathrm{F} 10$	0.97	2.46	$3.301(7)$	145
C30-H30 $\cdots \mathrm{F} 5$	0.93	2.44	$3.252(4)$	146

Symmetry codes: (i) $1+x, y-1, z$; (ii) $1+x, y, z$.
One of the hexafluorophosphate groups is disordered over two different orientations, with occupancies of 0.568 (15) and 0.432 (15).

Figure 1
The structure of (I). Displacement ellipsoids are drawn at the 40% probability level. H atoms and counter-ions have been omitted for clarity.

The $\mathrm{P}-\mathrm{F}$ distances were restrained to 1.58 (1) $\AA . \mathrm{H}$ atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.96 \AA$, and included in the final cycles of refinement using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20472036).

References

Baker, M. V., Bosnich, M. J., Brown, D. H., Byrne, L. T., Hesler, V. J., Skelton, B. W., White, A. H. \& Williams, C. C.. (2004). J. Org. Chem. 69, 7640-7652.

Barnard, P. J., Baker, M. V., Berners-Price, S. J., Skelton, B. W. \& White, A. H. (2004). J. Chem. Soc. Dalton Trans. pp. 1038-1047.

Bourissou, D., Guerret, O., Gabbai, F. P. \& Bertrand, G. (2000). Chem. Rev. 100, 39-91.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Garrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A. \& Youngs, W. J. (2001). Organometallics, 20, 1276-1278.
Herrmann, W. A. \& Kocher, C. (1997). Angew. Chem. Int. Ed. 36, 2162-2187.
Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, L. W., Lin, H. C., Chiu, P. L. \& Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yoon, J., Kim, S. K., Singh, N. J., Lee, J. W., Yang, Y. J., Chellappan, K. \& Kim, K. S. (2004). J. Org. Chem. 69, 581-583.

